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Abstract

The Hamiltonian Monte Carlo (HMC) algo-
rithm is often lauded for its ability to effec-
tively sample from high-dimensional distribu-
tions. In this paper we challenge the presumed
domination of HMC for the Bayesian analy-
sis of GLMs. By utilizing the structure of
the compute graph rather than the graphical
model, we show a reduction of the time per
sweep of a full-scan Gibbs sampler from O(d2)
to O(d), where d is the number of GLM pa-
rameters. A simple change to the implementa-
tion of the Gibbs sampler allows us to perform
Bayesian inference on high-dimensional GLMs
that are practically infeasible with traditional
Gibbs sampler implementations. We empir-
ically demonstrate a substantial increase in
effective sample size per time when comparing
our Gibbs algorithms to state-of-the-art HMC
algorithms. While Gibbs is superior in terms
of dimension scaling, neither Gibbs nor HMC
dominate the other: we provide numerical
and theoretical evidence that HMC retains
an edge in certain circumstances thanks to its
advantageous condition number scaling. In-
terestingly, for GLMs of fixed data size, we
observe that increasing dimensionality can
stabilize or even decrease condition number,
shedding light on the empirical advantage of
our efficient Gibbs sampler.

1 INTRODUCTION

Generalized linear models (GLMs) are among the most
commonly used tools in contemporary Bayesian statis-
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Figure 1: Part of a GLM compute graph with three
regression parameters. In the figure we compute ℓi,
the log-likelihood corresponding to data point i. Using
caching techniques we reduce the complexity of Gibbs
from O(d2) to O(d). Our set of regression parameters
after a coordinate update on j = 2 with a Gibbs sampler
is θ′ = (θ1, θ

′
2, θ3). To recompute ℓi after updating θ′2,

we only need to modify the entries highlighted in red.
Using caches updated by subtracting the old value
and adding the new one at the ‘+’ node, this change
can be performed in O(1) operations, instead of O(d)
operations. Over d coordinates, Gibbs then has a cost
of O(d) instead of O(d2).

tics (Gelman et al., 2013). As a result, applied Bayesian
statisticians require efficient algorithms to approximate
the posterior distributions associated with GLM pa-
rameters, often relying on Markov chain Monte Carlo
(MCMC). In this paper we focus on two MCMC sam-
plers: the Gibbs sampler and Hamiltonian Monte Carlo
(HMC), popularized in statistics by Geman and Geman
(1984) and Neal (1996), respectively.

Until around 2010, Gibbs sampling was the predom-
inant option, as it formed the core of a “first genera-
tion” of probabilistic programming languages (PPLs)
(Štrumbelj et al., 2024) such as BUGS (Lunn et al.,
2009) and JAGS (Plummer et al., 2003). A large shift
occurred in the early 2010s when HMC and its vari-
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ant, the No-U-Turn Sampler (NUTS) (Hoffman and
Gelman, 2014), were combined with reverse-mode au-
tomatic differentiation to power a “second generation”
of PPLs such as Stan (Carpenter et al., 2017). Sub-
sequently, HMC largely replaced Gibbs as the focus
of attention of the methodological, theoretical, and
applied MCMC communities. A notable exception is
Gibbs sampling under specific linear and conditionally
Gaussian models (Papaspiliopoulos et al., 2020; Zanella
and Roberts, 2021).

Our first contribution is the analysis of an algorithm
for Gibbs sampling that speeds up inference of GLMs
by a factor O(d), where d is the number of parame-
ters, compared to the Gibbs implementation used by
“first generation” PPLs. The main idea behind this
speedup is to use information encoded in the compute
graph associated with the target log density—in con-
trast, previous Gibbs algorithms relied on graphical
models (Jordan, 2004), which we show is a sub-optimal
representation of GLMs for the purpose of efficient
Gibbs sampling. The compute graph is a directed
acyclic graph (DAG) encoding the dependencies be-
tween the operations involved in computing a function.
See Figure 1 for an example. Programming strategies
to extract and manipulate such graphs are well devel-
oped, in large part because compute graphs also play a
key role in reverse-mode automatic differentiation (see
Margossian (2019) for a review).

This drastic O(d) speedup prompted us to reappraise
Gibbs sampling as a method of choice for approxi-
mating GLM posterior distributions. A holistic com-
parison of sampling algorithms requires taking into
account not only the running time per iteration, but
also the number of iterations to achieve one effective
sample (Flegal et al., 2008). To understand the latter,
we use a combination of empirical results and theory.
On the theoretical side, we consider normal models,
where both HMC and Gibbs have well-developed re-
sults quantifying the number of iterations needed to
achieve one effective sample (Roberts and Sahu, 1997;
Ascolani et al., 2024a; Beskos et al., 2013; Chen and
Gatmiry, 2023). See Section 4 for the rationale behind
the choice of a normal model and an extended bibli-
ography. In the normal setting, the O(d) runtime of
our improved Gibbs sampler combined with past the-
ory yields a favourable O(d) floating point operations
(flops) per effective sample, compared with the higher
O(d5/4) flops per effective sample for HMC. While the
d1/4 advantage of Gibbs over HMC may seem minor,
a key point is that Gibbs requires no adaptation to
achieve this performance, while HMC needs to be finely
tuned adaptively (Livingstone and Zanella, 2022), im-
plying that the practical rate for HMC may be even
higher. Note also that previous, graphical model-based

implementations of Gibbs sampling require O(d2) flops
per effective sample in the same setup.

Examining scaling in d alone does not provide a full
story, even in the normal setting; the shape of the
posterior contour lines also has a strong effect on the
sampling performance of both Gibbs and HMC. Vari-
ous notions of condition number κ are used (Langmore
et al., 2019; Hird and Livingstone, 2023) to summarize
the complexity brought by the shape of log-concave
distributions. In gradient-based methods, a popular
notion of condition number is the square of the broad-
est direction’s scale to that of the most constrained.
For optimally-tuned HMC with non-constant integra-
tion time on Gaussian targets, the cost per effective
sample is O(d5/4κ1/2) flops (Langmore et al., 2019;
Apers et al., 2022; Wang and Wibisono, 2023; Jiang,
2023). Understanding the condition number scaling of
Gibbs is more nuanced, as Gibbs sampling is invariant
to axis-aligned stretching (Román et al., 2014), but
is sensitive to rotations (the situation is reversed for
HMC (Neal, 2011)). We develop a notion of residual
condition number, κr, to capture how Gibbs perceives
the target’s shape (see Section 2.4). Crucially, κr ≤ κ.
On the other hand, due to random walk behaviour,
Gibbs’ cost per effective sample scales as O(dκr) flops,
and in some cases, κ = κr, leading to a potentially
worse or better scaling in the condition number for
Gibbs compared to HMC, depending on the nature of
the target. As a result, neither Gibbs sampling nor
HMC dominate each other.

The relative importance of κ and d will in general
be problem-dependent. To get some insight on how
these quantities relate to each other in practice, we
investigate sequences of posterior distributions obtained
by subsampling an increasing number of covariates from
real datasets. We find that various notions of condition
number increase until d ≈ n, after which they either
stabilize or, surprisingly, can in certain cases decrease
with d. This suggests that our efficient Gibbs sampling
will be particularly effective in GLMs where d≫ n.

We implemented our new Gibbs algorithm and bench-
marked it using a collection of synthetic and real
datasets. In 11 out of the 12 datasets considered, our
algorithm achieves a higher effective sample size (ESS)
per second compared to Stan, with a speedup of up to
a factor of 300.

2 BACKGROUND

In this section we introduce several key concepts for
studying the Gibbs sampler and HMC when applied to
GLMs. Throughout this paper, we denote the target
distribution of interest on Rd by π, with density π(θ) ∝
e−U(θ), for θ ∈ Rd, with respect to Lebesgue measure
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on Rd. We assume that for all θ ∈ Rd, ∇U(θ) and
∇2U(θ) are well-defined. The distribution π is called
strongly log-concave if there exists a constant a > 0
such that for all θ ∈ Rd, ∇2U(θ) ⪰ aId, and strongly
log-smooth if there exists a constant b > 0 such that
for all θ ∈ Rd, ∥∇2U(θ)∥ ≤ b <∞.

2.1 Gibbs sampling

In the literature, the term “Gibbs sampler” is associ-
ated with two key ideas: (1) moving a subset of coordi-
nates while fixing the others; and (2), using the condi-
tional distribution of the target distribution to perform
such an update. The algorithm in Section 3 is described
for simplicity in the context of Gibbs samplers, but
applies more generally to any “Metropolis-within-Gibbs”
(Chib and Greenberg, 1995) sampler which are those
based on (1) only. In the experiments, we use “slice
sampling within Gibbs”, specifically, with doubling and
shrinking (Neal, 2003). See Appendix C.4 for more
discussion on Gibbs versus “within-Gibbs.”

For θ = (θ1, . . . , θd) and j ∈ {1, 2, . . . , d}, let θ−j be
the vector containing all components of θ except for θj .
We define the conditional distributions πj|−j , which
correspond to the conditional distributions of θj given
θ−j , where θ ∼ π. In Metropolis-within-Gibbs, each
coordinate update is performed using a Markov kernel
Kj|−j that leaves πj|−j invariant. The Gibbs sampler
uses the Markov kernels Kj|−j(x, ·) = πj|−j(·), but
more general kernels are commonly used as well (Neal,
2003). It remains to decide the order in which to update
coordinates. One popular approach is to use a deter-
ministic update Gibbs sampler (DUGS) (Roberts and
Sahu, 1997; Greenwood et al., 1998), where coordinates
are updated in a fixed order. For example, when d = 3,
the DUGS kernel is: θ′1 ∼ K1|−1(·|θ2, θ3), followed by
θ′2 ∼ K2|−2(·|θ′1, θ3), and finally, θ′3 ∼ K3|−3(·|θ′1, θ′2).
We write KDUGS for the deterministic alternation of
the d Gibbs kernels Kj|−j(x, ·) = πj|−j(·). Options
beyond DUGS include the random scan Gibbs sampler,
which chooses coordinates to update randomly, and
block Gibbs samplers, which chooses several coordi-
nates to update at once and can improve convergence
(Li and Geng, 2005). In this work, we focus primar-
ily on KDUGS, as it yields a smaller asymptotic vari-
ance than random scan Gibbs in some problem classes
(Greenwood et al., 1998; Qin and Jones, 2022; Andrieu,
2016)—although a definitive conclusion is more nu-
anced (Roberts and Rosenthal, 2015; He et al., 2016).
Note also that random scan Gibbs would yield similar
scaling results for the targets we consider (Ascolani
et al., 2024a) (see also Appendix E for an empirical
demonstration).

2.2 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is an MCMC algo-
rithm that makes use of gradient information of the
target density and introduces a momentum in the sam-
pling process to provide efficient exploration of the
state space (Neal, 2011). Calculating the trajectory of
HMC samples requires solving a differential equation,
which is approximated using numerical integrators in
practice. We introduce HMC in two phases: using ide-
alized trajectories, which assume that exact numerical
integrators exists; and with the leapfrog integrator, a
popular numerical integrator in the case of HMC. In
both cases, the HMC kernel has an invariant distribu-
tion on an augmented space with momentum variables
p ∈ Rd, with joint density π̄(θ, p) = π(θ) · N (p | 0,M),
which admits π as the θ-marginal. Here, M is the
covariance matrix of the Gaussian momentum, which
is often referred to as the mass matrix of HMC.

For idealized HMC, we initialize with a starting point
θ(0) = θ(0) at time t = 0 and some momentum p(0) ∼
N (0,M). We specify a (possibly random) integration
time τ and solve for {θ(t)}t∈[0,τ ] from

θ′(t) = M−1 · p(t), p′(t) = −∇U(θ(t)), (1)

which corresponds to Hamiltonian dynamics. We then
record the draw θ(1) ← θ(τ), reset θ(0) ← θ(τ), and
draw a new p(0) ∼ N (0,M). Repeating the process,
we obtain a sequence of draws θ(0), θ(1), θ(2), . . ..

It is not generally possible to simulate the trajectory
in Eq. (1) exactly, so numerical integration is used.
For a given starting point (θ, p), integration step size
ϵ > 0, and number of steps s, the leapfrog integrator
Lϵ (Neal, 2011) is applied s times, where (θ′, p′) =
Lϵ(θ, p) is defined by p′1/2 = p − ϵ

2∇U(θ), followed by

θ′ = θ + ϵM−1 · p′1/2,, and finally, p′ = p′1/2 −
ϵ
2∇U(θ′).

Applying Ls
ϵ(θ, p) (Lϵ applied s times to (θ, p)) we

obtain a proposed point (θ̃, p̃) that approximates the
idealized HMC point (θ(τ), p(τ)) at time τ = ϵs. A
Metropolis–Hastings (MH) accept-reject step is then
introduced in order to leave π̄ invariant; the proposal
(θ̃, p̃) is accepted with the standard Metropolis proba-

bility denoted α((θ, p), (θ̃, p̃)) and otherwise we remain
at (θ, p).

2.3 Generalized linear models

Suppose we are given n observed pairs of covariates
xi ∈ Rd and responses yi ∈ Y ⊂ R, i ∈ {1, 2, . . . , n}.
The independent random responses Yi are assumed to
have a conditional density fY |X parameterized in terms
of the mean of the distribution; in a generalized linear
model (GLM), the mean of the distribution of response
Yi is assumed to depend only on the linear predictor
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x⊤
i θ, where θ ∈ Rd. We fix some inverse link function,

µ, and model the mean E[Yi] = µ(x⊤
i θ) ≡ µi. The full

likelihood is then L(θ) =
∏n

i=1 fY |X(yi | µi), and the
log-likelihood corresponding to data point (xi, yi) is
ℓi = log fY |X(yi | µi). In the Bayesian framework, a
prior with density π0 is specified on the regression pa-
rameters, such that one obtains a posterior distribution
with density π(θ) ∝ π0(θ) · L(θ).

2.4 Condition numbers and preconditioning

The condition number of a given positive definite ma-
trix M is defined as κ(M) := λmax(M)/λmin(M) where
λmax(M) and λmin(M) are the largest and smallest
eigenvalues of M , respectively. We can generalize this
definition to accommodate strongly log-concave distri-
butions. For a strongly log-concave distribution π, the
condition number of π can be defined as:

κ(π) := sup
θ∈Rd

∥∥∇2U(θ)
∥∥ sup

θ∈Rd

∥∥∇2U(θ)−1
∥∥ .

In particular, when π is Gaussian N (µ,Σ), we have
κ(π) = κ(Σ) = λmax(Σ)/λmin(Σ). Moving forward, we
refer to κ(π) as the raw condition number ; we simply
denote this by κ when there is no ambiguity.

It is common to transform the target distribution π
with a preconditioning matrix A in order to try to
reduce the condition number. That is, given θ ∼ π and
a full rank d×d matrix A, we define πA such that θA =
Aθ ∼ πA. In the context of HMC, preconditioning
with A is equivalent to setting the mass matrix to
A⊤A. One common approach to preconditioning is to
set A = diag(Varπ[θj ]

−1/2). In this case, we refer to
κ(πA) as the correlation condition number, denoted as
κcor(π), since the covariance and correlation matrix
of πA are the same. It is often implicitly assumed
that κcor ≤ κ, but this is not always true (Hird and
Livingstone, 2023), as we also see in our experiments.

We finally introduce the notion of the residual con-
dition number, κr(π), which is defined as κr(π) :=
infA∈D κ(πA), where D is the set of full rank d × d
diagonal matrices. By definition, κr ≤ κ. We will
demonstrate in Section 4 that the convergence rate for
Gibbs sampling depends on κr, as opposed to κ.

3 COMPUTE GRAPH GIBBS

In this section, we present a fast algorithm for Gibbs
sampling exploiting the structure of the compute graph.
When this algorithm is applied to Gibbs sampling of
GLMs, it reduces the computation time for a full scan of
d updates from O(d2n) to O(dn). Special cases of this
algorithm have been applied to Gibbs sampling of spe-
cific models (see, e.g., Mahani and Sharabiani (2015),

Equations 14–16), but not to probabilistic program-
ming languages as far as we are aware. Our compute
graph formulation makes it possible to automate and
generalize the use of the algorithm presented in this
section.

To illustrate our technique, we turn to logistic regres-
sion with parameters θ = (θ1, . . . , θd) and data points
{(xi, yi)}ni=1. The likelihood for this model is given by

L(θ) =
n∏

i=1

pi(θ)
yi(1− pi(θ))

1−yi ,

pi(θ) =
1

1 + exp
(
−x⊤

i θ
) .

We now introduce a flavour of compute graph suitable
for our purpose, namely a type of directed graph asso-
ciated with a function f(θ1, . . . , θd)—see Fig. 1 for an
example in the GLM context. First, for each variable
θj , we assume there is a corresponding input node in
the graph such that no edge points into it. We call the
graph vertices that are not input nodes the compute
nodes. For each compute node n, we assume there is an
associated operation, i.e., a function that takes as input
the values given by the nodes n′ such that (n′ → n) is
an edge in the graph. We assume the compute graph
has a single sink node, i.e., a node which has no out-
going edge. We also posit that the composition of the
operations along the compute graph from inputs to
sink yields a function that is identical to f(θ1, . . . , θd).

In Fig. 1, we see that the part of the compute graph for
calculating the likelihood associated with data point
xi revolves around computing the term x⊤

i θ. After a
single-coordinate update of θ, as would be done with the
Gibbs sampler, many of the compute graph nodes hold
the same value before and after the update (in Fig. 1,
those that change are highlighted in red). We explain
next how these invariant values allow us to attain an
O(d) speedup of the Gibbs sampler for GLMs.

We now introduce our approach for computing the like-
lihood of GLMs, which we call compute graph Gibbs
(CGGibbs). This approach is based on the following
idea: cache the scalar values of the linear predictors
x⊤
i θ for each data point i in a vector of length n,

cache. This requires only O(n) memory (this is neg-
ligible since the design matrix already requires stor-
ing d · n entries), but yields an O(d) computational
speedup. This approach is possible because the Gibbs
sampler considers coordinate-wise updates of the form
θ = (θ1, . . . , θj , . . . , θd) 7→ θ′ = (θ1, . . . , θ

′
j , . . . , θd), and

consequently likelihood updates have a special struc-
ture. For such updates, we have the following conve-
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θ1 θ2 θ3

Figure 2: The directed probabilistic graphical model
for the same regression problem as Fig. 1 with five
data points (xi, Yi) and three regression parameters θj .
Only edges into Y3 are emphasized and the covariates
xi are assumed fixed. Observed variables are shaded in
gray. Each time a θj is changed, we have to recompute
the likelihood from scratch for this representation as
opposed to updating the cache at the ‘+’ node found
in the compute graph representation in Fig. 1.

nient decomposition

x⊤
i θ

′ =

d∑
k=1

θkxik︸ ︷︷ ︸
cache[i]

−θjxij + θ′jxij .

This new linear predictor for a given data point can
be computed in O(1) time with caching, compared to
O(d) time without caching. From here, one evaluation
of the full likelihood comes at an O(n) cost, and a
full sweep over d coordinates is thus an O(dn) cost,
instead of the usual O(d2n) that would be incurred
without caching. The resulting speedup in terms of the
number of parameters, d, allows us to apply this new
approach to Bayesian inference with Gibbs sampling to
high-dimensional regression problems, including ones
where d≫ n.

Although this simple optimization is obvious from the
compute graph, presented in Fig. 1, it is not obvious
from the directed graphical model corresponding to
the given regression problem in Fig. 2. Probabilistic
programming languages (PPLs) incorporating Gibbs
samplers often perform optimizations in evaluating ra-
tios of likelihoods for Markov kernel proposals with
respect to graphical models, such as the one in Fig. 2
(Lunn et al., 2009). However, these graphs only re-
veal the dependence structure of random variables in
the model and decompositions of the likelihood, but
they do not yield insight into fine-grained optimization
of computations such as in Fig. 1. In our case, this
“fine-grained” optimization yields a substantial O(d) im-
provement in computation time with the introduction
of simple caching techniques.

4 THEORY

Since GLMs come in many flavours of priors and likeli-
hoods, we would ideally perform theoretical compari-
son of Gibbs and HMC under broad assumptions such

as log-concavity. Unfortunately, current theoretical re-
sults for the log-concave setting are not mature enough—
we seek to avoid the fallacy of comparing algorithms
via loose complexity upper bounds. Specifically, cur-
rent results for HMC and Gibbs on log-concave targets
fall short on various aspects, such as failing to take
into account both condition number and dimension si-
multaneously (Wang, 2017, 2019; Wang and Wu, 2014;
Wang and Yin, 2020) or focusing on fixed integration
time HMC instead of the non-constant integration time
variants used in practice (Chen and Vempala, 2022).
In fact, the scaling of randomized or dynamic HMC
as a function of the condition number for log-concave
targets is still an open problem as of the time of writing,
with different authors positing conflicting conjectures
(Lee et al., 2020; Apers et al., 2022).

Instead, we focus on normal models in this section. On
one hand, Bayesian GLM posterior distributions are
not exactly normal, but on the other hand, based on
Bernstein-von Mises theorems (van der Vaart, 1998),
many are well approximated by normal distributions.
Other Bayesian GLM posterior distributions are not
approximately normal, so we complement the results
in this section with experiments on Bayesian GLMs
with highly non-normal posterior distributions (Ap-
pendix A.8).

4.1 Convergence rates and scaling

Gibbs convergence rate Building on Roberts and
Sahu (1997), we first establish the convergence rate
of the idealized DUGS algorithm on Gaussian dis-
tributions with respect to various divergences: 1-
Wasserstein, 2-Wasserstein distance, and the Pearson-
χ2 divergence, denoted TV,W1,W2 and χ2, respec-
tively (see Appendix C for background on these diver-
gences and how they relate to the empirical results in
Section 5).

Theorem 4.1. Let π = N (µ,Σ) with precision ma-
trix Σ−1 having only non-positive off-diagonal ele-
ments. For any initial point x ∈ Rd and any D ∈
{TV,W1,W2, χ

2}, we have

D(Kt
DUGS(x, ·), π) = O

(
exp

(
− t

κ(Σ)

))
, t→∞.

Theorem 4.1 shows that the contraction rate of DUGS
is independent of d for all four divergences. Concur-
rently to our work, Ascolani et al. (2024a) has proved a
Kullback-Leibler divergence bound with the same con-
vergence rate as in Theorem 4.1 for strongly log-concave
and log-smooth targets and random sweep Gibbs sam-
plers. Currently available bounds for randomized HMC
do not appear as tight for strongly log-concave and log-
smooth targets (see discussion on HMC convergence
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rate in the next paragraphs). Therefore, the compar-
ison of theoretical results for Gibbs and HMC in the
Gaussian case is still informative.

Ideal HMC convergence rate Most scaling re-
sults for Metropolized HMC are presented in terms
of mixing times (which we review in the next sec-
tion), and not on convergence rates. See Appendix C.2
for more discussion on convergence rates versus mix-
ing times. There are, however, several studies on
the convergence rates of idealized HMC. For exam-
ple, Chen and Vempala (2022) provided a tight con-

vergence rate bound of O
(
1− 1

16κ(π)

)t
for idealized

HMC with constant integration time on strongly log-
concave and log-smooth targets π. However, Wang and
Wibisono (2023) achieved a W2 contraction rate with

improved κ scaling—O
(
1−Θ

(
1√
κ

))t
—for idealized

HMC on Gaussian targets using a time-varying inte-
gration time called Chebyshev integration time. Jiang
(2023) obtained the same accelerated rate on Gaus-
sian targets using a random integration time com-
bined with partial momentum refreshment. Whether

these O
(
1−Θ

(
1√
κ

))t
rates of idealized HMC can

be generalized to non-Gaussian targets remains an
open question. Furthermore, although the rates in
Wang and Wibisono (2023); Jiang (2023) are dimension-
independent, idealized HMC is not implementable in
practice since it requires exact ODE simulation.

Metropolized HMC mixing time The current
state-of-the-art mixing rate for Metropolized HMC
on general log-concave and log-smooth targets is
O(κd1/4 log(1/ϵ)) gradient queries for an ϵ-level error
in total variation distance (Chen and Gatmiry, 2023).
The O(d1/4) scaling (without known dependence on κ)
was originally established in Beskos et al. (2013) for
separable log-concave, log-smooth targets.

In another development, Chen et al. (2020) proved
a mixing time of O(κd11/12) for general log-concave
and log-smooth targets. Additionally, Lee et al. (2020)
showed that HMC with a single leapfrog step per itera-
tion has a mixing time of O(κd), and they conjectured
that the O(κ) dependence might be tight in this setting.

This dependence on the condition number has been
improved in the case of Gaussian targets. Specifi-
cally, Apers et al. (2022) achieved a mixing time of
O(κ1/2d1/4) by employing randomized integration steps
at each iteration. This result mirrors the improved con-
dition number scaling in the idealized HMC rates, and
the authors of this study conjecture that this enhanced
κ scaling could potentially generalize to broader classes
of log-concave and log-smooth targets, although this is
yet to be studied.

4.2 Influence of diagonal preconditioning

The scaling results presented in Section 4.1 suggest
that Gibbs sampling has better dimension scaling
than Metropolized HMC with non-constant trajectory
lengths, at least in the Gaussian case. In terms of con-
dition number scaling the situation is more nuanced,
and a full characterization requires a careful analysis
of diagonal preconditioning, which we now discuss.

A first observation is that focusing solely on κ(π), the
condition number of the untransformed target, might
not adequately represent the practical performance of
the two samplers. While the observation described
in the previous sentence is true for both samplers, its
underlying cause is quite distinct for Gibbs and HMC,
and so is the appropriate notion of condition number
in each case.

For HMC, the standard practice is to fit a diagonal pre-
conditioning matrix via adaptive MCMC; restricting
to diagonal matrices ensures that the compute cost per
leapfrog step stays linear in d. For instance, NUTS as
implemented in Stan by default adopts diagonal precon-
ditioning using estimated marginal standard deviations.
Hence, for HMC run for enough iterations, the scaling
in condition number will depend on the correlation
condition number κcor introduced in Section 2.4, but
with the caveat that marginal estimates need to be
learned. Therefore, for early iterations the dependence
will be on κ rather than κcor. On the other hand,
thanks to the suppression of random walks brought by
HMC with long trajectories, it is possible to achieve
κ1/2 scaling as discussed in Section 4.1, provided that
HMC’s key tuning parameters, the integrator step size
and trajectory length, are well-tuned.

The situation for Gibbs brings a mix of good news
and bad news, as we formalize in Proposition 4.2. On
the negative side, the dependence grows linearly in
the condition number instead of as a square root. On
the positive side, because Gibbs is invariant to axis-
aligned stretching, it is as if Gibbs automatically uses
the optimal diagonal preconditioner, without having
to explicitly learn it.

Proposition 4.2. Under the same conditions as The-
orem 4.1, for any initial point x ∈ Rd and any
D ∈ {TV,W1,W2, χ

2},

D(Kt
DUGS(x, ·), π) = O

(
exp

(
− t

κr(Σ)

))
, t→∞.

In contrast, HMC may even experience negative effects
from diagonal preconditioning (or equivalently, mass
matrix adaptation). This was pointed out previously
by Hird and Livingstone (2023, Sec 3.5.3), who provide
an instance where diagonal preconditioning using the
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target standard deviation results in a worse condition
number, even in the Gaussian case.

Even when such preconditioning theoretically offers
benefits, current mass matrix adaptation methods rely
on moment-based estimates, which can take a consid-
erable amount of time to become accurate. Therefore,
one might not achieve the idealized κ rate in practice
with HMC due to suboptimal mass matrix adaptation
(see Appendix A.7).

Other works have also considered condition numbers
resulting from different preconditioning strategies. As-
colani et al. (2024a) used the condition number after
each dimension has been scaled by the square root of
their respective smoothness constant. Hird and Liv-
ingstone (2023) showed how the condition number is
affected by various linear preconditioning strategies
such as scaling by the square root of the Fisher infor-
mation matrix, the covariance matrix or using the R
matrix from the QR decomposition, etc.

5 EXPERIMENTS

In this section, we conduct experiments showing the
performance gain of CGGibbs over other popular
Gibbs sampler implementations as well as compar-
ing the efficiency of CGGibbs and NUTS on real
datasets. The source code for these experiments
can be found at https://github.com/UBC-Stat-ML/
gibbs-vs-hmc-mev. All experiments were conducted
on the ARC Sockeye computer cluster at the University
of British Columbia. Additional experiments, details
of the experimental setup and instructions for repro-
ducibility are available in Appendix A.

5.1 Compute graph Gibbs is faster than
prevailing Gibbs implementations

We first study the running time of various implemen-
tations of within-Gibbs samplers: our CGGibbs sam-
pler, as well as the popular MultiBUGS v2.0 (Lunn
et al., 2009), JAGS v4.3.2 (Plummer et al., 2003) and
Gen.jl v0.4.7 (Cusumano-Towner et al., 2019) software
packages. The goal is to confirm that previous imple-
mentations of within-Gibbs samplers scale in O(d2) per
sweep, versusO(d) for our method. For this experiment,
we consider a sequence of synthetic logistic regression
datasets with increasing dimension d ∈ {21, . . . , 212}.
Each parameter has a Gaussian prior with standard
deviation 10. Since in this first experiment we restrict
ourselves to Gibbs samplers, we use the time taken
to run 1000 sweeps as a representation of the compu-
tational complexity. The results, presented in Fig. 3,
show that CGGibbs does indeed achieve an O(d) scal-
ing, while other currently available and commonly used

Figure 3: Wall-clock time (in seconds) taken to per-
form 1000 sweeps versus dimension for various Gibbs
sampler implementations on synthetic logistic regres-
sion datasets of increasing dimensionality (log-log scale,
lower is better).

Gibbs samplers have an undesirable O(d2) scaling.

5.2 Empirical scaling of compute graph Gibbs
and NUTS

Next, we compare the wall-clock time per ESS as a func-
tion of the number of covariates for the Gibbs and Stan
NUTS (2.35.0) (Carpenter et al., 2017) samplers. We
exclude adaptation time from timings and focus on the
stationary regime for simplicity. In the main text, we
summarize the ESS performance by taking the median
across all test functions θ 7→ θi (first moment of each
marginal) and θ 7→ θ2i (squared marginal moments),
see also Appendix A for results where ESS is summa-
rized with the minimum ESS across test functions. We
show results on the colon cancer dataset (Alon et al.,
1999) in the main text, see Appendix A.4 for simi-
lar experiments on other datasets. For each dataset,
we create a sequence of logistic regression problems
with an increasing number of predictors and obtain
samples from the posterior of each of these problems.
Specifically, we shuffle uniformly at random the order
of the covariates and choose an increasing prefix of
d ∈ {21, 22, . . . , 210, 2000} features from the permuted
dataset (the colon dataset has 2000 features) to be
predictors for the response and use an isotropic normal
prior with standard deviation 10 for the parameters.
Note that by adding covariates we change not only the
dimensionality but also the condition number of the
target distribution. The results are shown in Fig. 4,
where we see that the efficiency of CGGibbs scales
favourably as a function of the number of covariates
compared to Stan NUTS.

Upon closer inspection of Fig. 4, there appears to be a
change in behaviour in the performance of CGGibbs
when d ≈ n (the colon dataset has n = 62 obser-
vations). To investigate this, we perform the same

https://github.com/UBC-Stat-ML/gibbs-vs-hmc-mev
https://github.com/UBC-Stat-ML/gibbs-vs-hmc-mev
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Figure 4: Wall-clock time (in seconds) per ESS for
CGGibbs and Stan NUTS as a function of the number
of subsampled predictors (log-log scale, lower is better)
from a colon cancer gene expression dataset (Alon et al.,
1999). Box plots summarize 10 replicates.

Figure 5: Dimensional scaling of the number of Gibbs
sweeps to achieve one ESS for different subsampled size
of data points (series colours) and predictors (abscissa).

experiment but with a varying number of observations
with n ∈ {23, 24, 25} and record the number of sweeps
per median ESS. Fig. 5 confirms that there is again
a similar transition when d < n to d > n. This be-
haviour is partially explained with the stabilization (or
decrease) of various notions of condition number when
d increases past n (see Appendix A.5). Interestingly,
the decrease in sweeps per ESS is similar to a result
from Qin and Wang (2024, Theorem 2), where they
developed a lower bound for the convergence rate of
a random scan Gibbs sampler for submodels that de-
pend on the full model. We further investigate this
behaviour using controlled experiments with synthetic
data in Appendix A.6.

5.3 Panel of datasets

We compare the time per ESS for CGGibbs and Stan
NUTS on 12 binary classification datasets. These
datasets include newsgroup datasets (Lang, 1995), gene
expression datasets (Golub et al., 1999; Alon et al.,
1999; Singh et al., 2002; Spira et al., 2007; Freije et al.,
2004), a mass spectrometry data set (Guyon et al.,

Figure 6: Median (across 30 replicates) wall-clock time
(in seconds) per 100 ESS for CGGibbs and Stan NUTS
on 12 logistic regression real datasets with a Gaussian
prior. Each point is a dataset: its x-axis coordinate
denotes the median time for NUTS, its y-axis coor-
dinate, for CGGibbs. The region beyond the dashed
lines indicates that the corresponding sampler has not
reached a minimum of 100 ESS within three days.

Figure 7: Similar plot to Fig. 6 but for the horseshoe
prior.

2004) a digit recognition data set (Guyon et al., 2004)
and an artificial dataset (Guyon et al., 2004). We use
a logistic regression model on each dataset with two
types of priors: a Gaussian prior with a standard devi-
ation of 10 for each of the parameters and a horseshoe
prior (Carvalho et al., 2009). Inference for each combi-
nation of dataset and prior is repeated 30 times with
different seeds. To avoid unreliable ESS estimates, we
only report ESS estimates when the trace is sufficiently
long to achieve an ESS of at least 100. More details on
the data and model can be found in Appendix A.1.

The outcome of these experiments is summarized in
Figs. 6 and 7. Overall, CGGibbs outperforms Stan
NUTS in almost all datasets and is more than 300
times faster than Stan NUTS in time per ESS for the
best case. Furthermore, Fig. 8 suggests a correlation
between the d/n ratio and the performance of CGGibbs
relative to NUTS.
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Figure 8: Ratio of median time (in seconds) per ESS
between CGGibbs and Stan NUTS versus the d/n ratio.
Each point represents a combination of dataset and
prior where both samplers reached 100 minimum ESS
within 3 days. The dashed line indicates where d = n
and the dash dotted line indicates the threshold of
equal performance between the two samplers.

6 DISCUSSION

Both our CGGibbs algorithm and reverse-mode au-
tomatic differentiation, (the key ingredient to auto-
mate the use of HMC in PPLs (Margossian, 2019))
are based on related but distinct notions of compute
graphs. While we have focused on GLMs for con-
creteness, the efficient update of the compute graph
described in Section 3 appears to apply more generally.
Automatic processing of arbitrary compute graphs for
efficient CGGibbs updates is potentially simpler than
the machinery needed for reverse-mode automatic dif-
ferentiation: in the former case, only certain reduce
operations such as addition need special treatment,
whereas in the latter case, all primitive operations need
to be handled individually (i.e., each provided with
an adjoint). Beyond GLMs, other examples of uses of
CGGibbs include models with sufficient statistics and
models of infinite dimensionality. Another interesting
future direction is the analysis of algorithms combining
the strengths of both Gibbs and HMC, such as optimal
designs of block HMC-within-Gibbs algorithms.
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tonian Monte Carlo for efficient Gaussian sampling:
Long and random steps. arXiv:2209.12771.

Ascolani, F., Lavenant, H., and Zanella, G. (2024a).
Entropy contraction of the Gibbs sampler under log-
concavity. arXiv:2410.00858.

Ascolani, F., Roberts, G. O., and Zanella, G.
(2024b). Scalability of Metropolis-within-Gibbs
schemes for high-dimensional Bayesian models.
arXiv:2403.09416.

Beskos, A., Pillai, N. S., Roberts, G. O., Sanz-Serna,
J. M., and Stuart, A. M. (2013). Optimal tuning
of the hybrid Monte Carlo algorithm. Bernoulli,
19(5A):1501–1534.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D.,
Goodrich, B., Betancourt, M., Brubaker, M. A., Guo,
J., Li, P., and Riddell, A. (2017). Stan: A proba-
bilistic programming language. Journal of Statistical
Software, 76:1–32.

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2009).
Handling sparsity via the horseshoe. In Proceedings
of the 12th International Conference on Artificial
Intelligence and Statistics, pages 73–80. PMLR.

Chen, Y., Dwivedi, R., Wainwright, M. J., and Yu,
B. (2020). Fast mixing of Metropolized Hamilto-
nian Monte Carlo: Benefits of multi-step gradients.
Journal of Machine Learning Research, 21(92):1–72.

Chen, Y. and Gatmiry, K. (2023). When does
Metropolized Hamiltonian Monte Carlo provably out-
perform Metropolis-adjusted Langevin algorithm?
arXiv:2304.04724.

Chen, Z. and Vempala, S. S. (2022). Optimal conver-
gence rate of Hamiltonian Monte Carlo for strongly
logconcave distributions. Theory of Computing, 18:1–
18.

Chib, S. and Greenberg, E. (1995). Understanding
the Metropolis-Hastings algorithm. The American
Statistician, 49(4):327–335.

Cusumano-Towner, M. F., Saad, F. A., Lew, A. K.,
and Mansinghka, V. K. (2019). Gen: A general-
purpose probabilistic programming system with pro-
grammable inference. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 221–236.
PLDI.

Flegal, J. M., Haran, M., and Jones, G. L. (2008).
Markov Chain Monte Carlo: Can we trust the third
significant figure? Statistical Science, 23(2):250–260.



Is Gibbs sampling faster than Hamiltonian Monte Carlo on GLMs?

Freije, W. A., Castro-Vargas, F. E., Fang, Z., Horvath,
S., Cloughesy, T., Liau, L. M., Mischel, P. S., and
Nelson, S. F. (2004). Gene expression profiling of
gliomas strongly predicts survival. Cancer Research,
64(18):6503–6510.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B.,
Vehtari, A., and Rubin, D. B. (2013). Bayesian
Data Analysis. Chapman and Hall/CRC, 3rd edition
edition.

Geman, S. and Geman, D. (1984). Stochastic relaxation,
Gibbs distributions, and the Bayesian restoration of
images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6(6):721–741.

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C.,
Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh,
M. L., Downing, J. R., Caligiuri, M. A., et al. (1999).
Molecular classification of cancer: Class discovery
and class prediction by gene expression monitoring.
Science, 286(5439):531–537.

Greenwood, P. E., McKeague, I. W., and Wefelmeyer,
W. (1998). Information bounds for Gibbs samplers.
The Annals of Statistics, 26(6):2128–2156.

Guyon, I., Gunn, S., Ben-Hur, A., and Dror, G. (2004).
Result analysis of the NIPS 2003 feature selection
challenge. Advances in Neural Information Process-
ing Systems, 17.

He, B. D., De Sa, C. M., Mitliagkas, I., and Ré, C.
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Supplementary Materials

A Details of experiments

In this section, we provide some additional experiments and details on the experiments found in the main text of
the paper.

The license information for used assets is as follows:

• Datasets: We used the binary classification datasets from https://jundongl.github.io/scikit-feature/

datasets.html, licensed under the GNU General Public License Version 2 (GPL-2.0).

• multiBUGS v2.0: GNU Lesser General Public License Version 3 (LGPL-3.0).

• JAGS 4.3.2: GNU General Public License Version 2.0 (GPL-2.0), MIT License.

• Stan NUTS 2.35.0: The 3-Clause BSD License (BSD 3-clause).

• Julia package Pigeons: GNU Affero General Public License Version 3 (AGPL-3.0).

A.1 Details on Section 5.3

In this section, we give more details on the datasets as well as model specifics and data preprocessing procedures
used in Section 5.

Data details We used the binary classification datasets from https://jundongl.github.io/scikit-feature/

datasets.html, where a collection of classification datasets of varying sizes and sparsity is listed, along with
their sources. The datasets we used vary in size from n = 60 to n = 7000 observations, as well as from d = 500 to
d = 22283 predictors. Across the datasets, d/n ranges from 0.1927 to 262.1647. These details are summarized in
Table 1. Note that the sparsity is defined as the proportion of zero entries in the design matrix.

Priors The priors we use in our models are as follows:

Gaussian prior A Gaussian with mean 0 and standard deviation 10 is used for each parameter, i.e.

θj ∼ N(0, 102), ∀ j ∈ {1, . . . , d}.

Horseshoe prior A t-distribution prior is used for the intercept and zero mean Gaussian priors with standard
deviation coming from a half-Cauchy are placed on the rest of the coefficients. That is,

θ1 ∼ t(3, 0, 1)

θj ∼ N(0, λ2
jτ

2), ∀ j ∈ {2, . . . , d}
λj ∼ C+(0, 1), ∀ j ∈ {2, . . . , d}
τ ∼ C+(0, 1),

where t(ν, µ, σ) denotes a t-distribution with ν degrees of freedom, location µ, scale σ and C+(0, 1) denotes
a half-Cauchy distribution. See Fig. 16 in Appendix A.8 for a visual representation of the complex geometry
induced by this prior.

Likelihood We use a logistic regression likelihood, see Section 3.

https://jundongl.github.io/scikit-feature/datasets.html
https://jundongl.github.io/scikit-feature/datasets.html
https://jundongl.github.io/scikit-feature/datasets.html
https://jundongl.github.io/scikit-feature/datasets.html
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Algorithm 1 Compute graph Gibbs for GLMs (T passes over all parameters)

Require: Initial regression parameters β(0), prior π0 = ⊗d
j=1π0,j , observations {(xi, yi)}ni=1, inverse link function

µ, response distribution fY |X (mean parametrization), # MCMC iterations T , conditional Markov kernel

proposals {Qj|−j}dj=1, conditional targets {πj|−j}dj=1

1: for i in 1, 2, . . . , n do ▷ One-time O(dn) cache of linear predictors

2: cache[i]←
∑d

j=1 βjxij

3: end for
4: β ← β(0)

5: for t in 1, 2, . . . , T do
6: for j in 1, 2, . . . , d do
7: β′

j ∼ Qj|−j(·|β−j) ▷ Metropolis-within-Gibbs proposal
8: ℓ← 0
9: for i in 1, 2, . . . , n do ▷ Increment log-likelihood

10: linear predictor← cache[i]− βjxij + β′
jxij

11: ℓ← ℓ+ log(fY |X(yi|µ(linear predictor)))
12: end for
13: U ← Unif(0, 1)
14: α← MH probability(ℓ, πj|−j , Q(·|β−j), π0,j) ▷ Acceptance probability
15: if U ≤ α then ▷ Accept proposal
16: for i in 1, 2, . . . , n do ▷ O(n) update of cache
17: cache[i]← cache[i]− βjxij + β′

jxij

18: end for
19: βj ← β′

j ▷ Update parameter
20: end if
21: end for
22: β(t) ← β
23: end for
24: return {β(t)}Tt=0
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Table 1: Datasets considered in our experiments.

Dataset Sample size Features Sparsity

ALLAML 72 7129 3.3×10−5

BASEHOCK 1993 4862 0.9861
GLI 85 85 22283 0
PCMAC 1943 3289 0.9854
Prostate GE 102 5966 0
RELATHE 1427 4322 0.9805
SMK CAN 187 187 19993 0
arcene 200 10000 0.4562
colon 62 2000 0.4158
gisette 7000 5000 0.87
leukemia 72 7070 0.4368
madelon 2600 500 7.6×10−7

A.2 CGGibbs algorithm

The CGGibbs algorithm when applied to GLMs is stated in Algorithm 1.

A.3 Implementation details

All MCMC chains are run until a minimum ESS of 100 is reached. Here both CGGibbs and Stan NUTS use
half of the total number of iterations as warmup and warmup samples are not used in the ESS calculations. The
reasoning for why the ESS provides an adequate estimate of divergence scalings is given in Appendix C.3. We
note that in our simulations, when subsampling is performed for each replicate, we change the shuffling of the
data as well as the seed for the MCMC chains.

CGGibbs We use the slice sampler Neal (2003) from the Julia package Pigeons (Surjanovic et al., 2023) and
set the number of passes through all variables per exploration step as 1 while the other hyperparameters are set
to their default values.

Stan NUTS We use Stan NUTS (2.35.0) Carpenter et al. (2017) and set all hyperparameters other than
warmup time to their defaults.

Data preprocessing We follow the standard practice of standardizing the design matrix of each dataset before
supplying them to the samplers. Surprisingly, we observe that Stan NUTS benefits from sparse design matrices
(sparsity greater than 0.85) even without sparse encoding in the model. Therefore, we opt rescale the non-zero
entries of sparse datasets by dividing by their maximum absolute values for each column for both Stan NUTS
and CGGibbs, making the comparison as fair as possible.

A.4 More dimensional scaling results

In this section, we repeat the increasing column experiment previously done for the colon cancer dataset on other
datasets. These are datasets from Section 5.3 where both CGGibbs and Stan NUTS achieve a minimum ESS of
100 within 3 days using a Gaussian prior. For each dataset, there are 10 replicates runs with a different shuffling
of the features and a different random seed for the MCMC chain. The results are shown in Figs. 9 and 10.

In addition, we also show the number of sweeps (or iterations for NUTS) per median ESS in Figs. 11 and 12,
where the shift from d < n to d > n is more evident. Observe that this shift does not always occur at the point
where d = n but usually in its vicinity.
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Figure 9: Time per median ESS for CGGibbs and Stan NUTS as a function of dimension for several other
datasets. The box plots summarize the results over 10 replicates.

A.5 Condition number scaling

In this section, we show several examples of the shift in sampling efficiency from d < n to d > n also occuring for
various notions of condition number when the Gaussian prior is used. The results are shown in Fig. 13. Based on
this figure, we conclude that the shift in sampling efficiency may not occur for sparse data such as the PCMAC
newsgroup dataset.

A.6 Impact of irrelevant parameters on the Gibbs mixing rate

To further examine the effect of varying the number of features on the Gibbs sampler, as seen in Section 5.2, we
generate three synthetic datasets where only a prefix of the features influence the outcome. Specifically, each
dataset has

Design matrix: x = (x1, x2, . . . , xn)
⊤ ∈ Rn×d,

True parameter: θ = (a, θs,0) ∈ Rd,

Logistic outcome: yi | xi ∼ Bern(logistic(a+ θ⊤xi)), i = 1, . . . , n,

where d = 215, n = 20, xi ∈ Rd for all i = 1, . . . , n, a ∈ R is the intercept and θs ∈ R30 is the coefficient vector for
the significant features. The design matrices for each scenario are as follows:

(1) Set xi ∼ N (0, Id) for all i = 1, . . . , n. In this setting, the features are uncorrelated.

(2) Set xi the same as scenario (1) for all i ≤ 30 and set xi = x1 for all i > 30. Here, extra features are perfectly
correlated with the first (significant) feature.

(3) Set xi the same as scenario (1) for all i ≤ 30 and set xi = 0 for all i > 30.
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Figure 10: Time per min ESS for CGGibbs and Stan NUTS as a function of dimension for several other datasets.
The box plots summarize the results over 10 replicates.

We use CGGibbs to sample from these synthetic datasets using a Gaussian prior. The results of these experiments
are shown in Fig. 14. The results confirm the surprising findings of Section 5.2 that adding more features can
help the Gibbs sampler even if the added features are not related to the data generation process—depending on
how “well behaved” the extra features are. In the case of an overparameterized GLM, the irrelevant dimensions
might be related to the auxiliary variables used in data augmentation samplers (Tanner and Wong, 1987). We
suspect that the extra features let the parameters move more freely in a larger state space, thereby speeding up
the overall mixing of the chain. Based on these results, it seems that the Gibbs sampler can potentially benefit
from overparameterization.

In addition, zero elements can decrease the number of sweeps per median ESS while not helping decrease the
number of sweeps per min ESS. This is because updates to components associated with zero elements are not
affected by the likelihood, thereby making the chains of these components sample from the priors. As prior
distributions are typically easy to sample from, the ESS of these components can increase, which increases the
median ESS across marginals (but not the min ESS, which measures the most difficult marginal). We also observe
this disparity between min and median ESS in sparse datasets in Appendix A.9

A.7 Condition number adaptation with NUTS

In this section, we show an example of a problem where κcor < κ. For this problem, we apply a logistic regression
model with a Gaussian prior on a subset of the prostate cancer dataset where d = n = 16 and record the
progression of the condition number adaptation in Stan NUTS. The result is shown in Fig. 15.

A.8 Horseshoe prior example

Fig. 16 shows a visual representation of the horseshoe prior for the case β ∈ R2. Notice that, while the univariate
marginals would suggest a log-concave distribution, the bivariate densities indicate a much more complex geometry.
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Figure 11: Sweeps per median ESS for CGGibbs and Stan NUTS as a function of dimension. The black line
indicates the point at which d = n. The box plots summarize the results across 10 replicates.

A.9 Panel of datasets: results for min ESS

The time per minimum ESS results for the panel of datasets considered in Section 5.3 are shown in Fig. 17. For
non-sparse datasets, the performance for both samplers in terms of the minimum ESS is similar to the median
ESS counterpart. For sparse data, however, Stan NUTS performs better in terms of time per minimum ESS.
This behaviour is in line with the results from Appendix A.6 as a sparse data matrix can be interpreted as being
similar to the third scenario in that section.

B Proofs

In this section we prove Theorem 4.1 and Proposition 4.2.

B.1 Proof of Theorem 4.1

Proof of Theorem 4.1. To establish the convergence rate of DUGS, we first define some relevant matrices. Let

Σ =


Σ11 Σ12 . . . Σ1d

Σ21 Σ22 . . . Σ2d

...
...

. . .
...

Σd1 Σd2 . . . Σdd

 , Σ−1 := Q =


Q11 Q12 . . . Q1d

Q21 Q22 . . . Q2d

...
...

. . .
...

Qd1 Qd2 . . . Qdd

 .

Define

A(Σ) = I − diag(Q−1
11 , Q

−1
22 , . . . , Q

−1
dd )Q,

and let L(Σ) be a block lower triangular matrix such that the lower triangle blocks coincide with those of A(Σ).
Finally, set U(Σ) = A(Σ)− L(Σ) and define

B(Σ) = (I − L(Σ))−1U(Σ).
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Figure 12: Number of sweeps per min ESS for CGGibbs and Stan NUTS as a function of dimension. The black
line indicates the point at which d = n. The box plots summarize the results across 10 replicates.

We express the convergence rate for each metric in terms of the spectral radius of the matrix B(Σ), denoted
ρ(B(Σ)), which is the modulus of the eigenvalue of B(Σ) with the largest modulus. From Lemma B.1, we have
that

ρ(B(Σ)) ≤ exp

(
− 1

κ(Σ)

)
.

TV bound. First, we prove that the rate of convergence of DUGS in TV distance is given by ρ(B(Σ)). From
Theorem 1 of Roberts and Sahu (1997), we have πt := Kt

DUGS(x, ·) = N (µt,Σt) for all t ≥ 0, where

µt = µ+B(Σ)t(µ0 − µ), Σt = Σ+B(Σ)t(Σ0 − Σ)(B(Σ)⊤)t (2)

with N (µ0,Σ0) being the initial distribution. (I.e., here µ0 = x and Σ0 = 0.) By Pinsker’s inequality, we can
bound the total variation with the KL divergence, and the KL divergence between two Gaussians has a closed-form
expression, so that

TV(π, πt) ≤
√

1

2
KL(π||πt)

=
1√
2

√
tr(Σ−1Σt − I) + (µ− µt)⊤Σ−1(µ− µt)− log det(ΣtΣ−1). (3)

We analyze the convergence for each of the terms inside the square root. By Eq. (2),

tr(Σ−1Σt − I) = tr
(
Σ−1(Σ +B(Σ)t(Σ0 − Σ)(B(Σ)t)⊤)− I

)
(4)

= tr(Σ−1B(Σ)t(Σ0 − Σ)(B(Σ)t)⊤)

= O(ρ(B(Σ))2t),
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Figure 13: Dimensional scaling of various notions of condition number when the Gaussian prior is used for
different datasets and sample sizes. The black line indicates the point at which d = n.

where the asymptotic rate is due to the fact that B(Σ)t converges to 0 element-wise at rate ρ(B(Σ)) (Roberts
and Sahu, 1997, Lemma 4). Similarly, combining Eq. (2) and the convergence of B(Σ)t, we have that

∥µ− µt∥ = ∥Bt(µ− µ0)∥ = O(ρ(B(Σ))t),

yielding

(µ− µt)
⊤Σ−1(µ− µt) = O(ρ(B(Σ))2t). (5)

For the third term, we obtain that

|log det(ΣtΣ
−1)| = |log det(I +B(Σ)t(Σ0 − Σ)(B(Σ)t)⊤Σ−1)| (6)

≤ tr(B(Σ)t(Σ0 − Σ)(B(Σ)t)⊤Σ−1)

= O(ρ(B(Σ))2t).

Finally, combining Eq. (3) and Eqs. (4) to (6) yields

TV(π, πt) = O(ρ(B(Σ))t). (7)

Wasserstein bounds. Next, we prove the Wasserstein bounds. For two Gaussian distributions π1 = N (µ1,Σ1)
and π2 = N (µ2,Σ2), we have the following formula for their Wasserstein 2-distance:

W2
2(π1, π2) = ∥µ1 − µ2∥22 + tr(Σ1 +Σ2 − 2(Σ

1/2
2 Σ1Σ

1/2
2 )1/2), (8)

where tr(M) is the trace of the matrix M and M1/2 is the principal square root of M . Applying (8) to
π1 = πt = N (µt,Σt) and π2 = π = N (µ,Σ) gives us

W2
2(π, πt) = ∥µ− µt∥22 + tr(Σ + Σt − 2(Σ1/2ΣtΣ

1/2)1/2) (9)

= ∥B(Σ)t(µ0 − µ)∥22 + tr(2Σ +B(Σ)t(Σ0 − Σ)(B(Σ)⊤)t)

− 2 tr(Σ1/2(Σ +B(Σ)t(Σ0 − Σ)(B(Σ)⊤)t)Σ1/2)1/2)

= ∥B(Σ)t(µ0 − µ)∥22 + 2 tr(Σ) + tr(B(Σ)t(Σ0 − Σ)(B(Σ)⊤)t)

− 2 tr((Σ2 + (Σ1/2B(Σ)t(Σ0 − Σ)(B(Σ)⊤)tΣ1/2)1/2)

= ∥B(Σ)t(µ0 − µ)∥22 + 2 tr(Σ) + tr(Mt)− 2 tr((Σ2 + (Σ1/2MtΣ
1/2)1/2),
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Figure 14: Effect of extra features on the number of Gibbs sweeps per ESS when the Gaussian prior is used in
three different scenarios: (1) no multicollinearity in the design matrix, (2) multicollinearity present in the design
matrix, and (3) irrelevant features are identically zero. The dashed line is where d = n and the dash-dotted line
is where the “irrelevant features” start to be added. Left: results in terms of sweeps per min ESS, reft: results
in terms of sweeps per median ESS

where Mt := B(Σ)t(Σ0 − Σ)(B(Σ)⊤)t. We bound the last term in the above expression using the fact

∃ ϵ ∈ (0, 1) : tr

(
4
1− ϵ

ϵ2
Σ−Mt

)
≥ 0 ∀ t ≥ 0.

This is easy to confirm since the range of the function g(ϵ) = 4 1−ϵ
ϵ2 in (0, 1) is (0,∞) and the matrix in the trace

is symmetric. With this, we have

tr

(
4
1− ϵ

ϵ2
Σ−Mt

)
≥ 0.

⇔ tr

(
4
1− ϵ

ϵ2
ΣMt −M2

t

)
≥ 0.

⇔ tr

(
(1− ϵ)ΣMt −

ϵ2

4
M2

t

)
≥ 0.

⇔ tr (ΣMt) ≥ tr

(
ϵΣMt +

ϵ2

4
M2

t

)
.

⇔ tr
(
Σ2 +ΣMt

)
≥ tr

(
Σ2 + ϵΣMt +

ϵ2

4
M2

t

)
.

⇔ tr
(
Σ2 +Σ1/2MtΣ

1/2
)
≥ tr

((
Σ+

ϵ

2
Mt

)2)
.

Finally, since the square root operation is monotone increasing, we have

tr
(
(Σ2 +Σ1/2MtΣ

1/2)1/2
)
≥ tr(Σ) +

ϵ

2
tr(Mt). (10)

Plugging (10) into (9) gives us

W2
2(π, πt) ≤ ∥B(Σ)t(µ0 − µ)∥22 + 2 tr(Σ) + tr(Mt)− 2 tr(Σ)− ϵ tr(Mt)

= ∥B(Σ)t(µ0 − µ)∥22 + (1− ϵ) tr(Mt)

= ∥B(Σ)t(µ0 − µ)∥22 + (1− ϵ) tr(B(Σ)t(Σ0 − Σ)(B(Σ)⊤)t).

Combining this with Lemma 4 from Roberts and Sahu (1997), we have

W2
2(π, πt) = O(ρ(B(Σ))2t)

which shows the convergence rate for Wasserstein 2 distance. By properties of the Wasserstein distance, it follows
that W1(πt, π) ≤W2(πt, π) and hence W1(πt, π) = O(ρ(B(Σ))t).
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Figure 15: Condition number (lower is better) adaption used by NUTS for a logistic regression problem with a
Gaussian prior. The condition number is plotted as a function of the number of MCMC iterations. The green
dashed line is the initial condition number (no preconditioning), the red dashed line is the condition number after
preconditioning with marginal standard deviations and the solid black line is the best linear preconditioner. The
NUTS condition number (blue solid line) eventually converges to the red dashed line.

Chi-squared bound. For the Pearson-χ2 divergence, the result follows from direct application of Theorem 1
and Lemma 4 of Li and Geng (2005). Namely, we have that

χ2(πt, π) = O(ρ(B(Σ))t).

Lemma B.1. Under the conditions of Theorem 4.1,

ρ(B(Σ)) ≤ exp

(
− 1

κ(Σ)

)
.

Proof of Lemma B.1. Our proof proceeds in two steps, using results from Roberts and Sahu (1997). We first
establish a bound on the L2 convergence rate of the random sweep Gibbs sampler (RSGS), ρL2(RSGS,Σ), in
terms of d and κ(Σ). This rate is easier to study as it involves the matrix A(Σ) instead of B(Σ). We then
conclude that ρ(B(Σ)) ≤ ρL2(RSGS,Σ) from an existing result in Roberts and Sahu (1997).

For any symmetric positive definite matrix Σ, there exists a rotation matrix R that makes R−1ΣR diagonal.
Furthermore, the condition number κ(Σ) of the Gaussian distribution with covariance Σ is invariant to rotations.
Therefore, we can consider N (µ,Σ) with a fixed condition number, diagonal covariance matrix Σ and its rotations
without loss of generality. Now, for any matrix M , denote λ(M) its set of eigenvalues and DM the inverse of
the diagonal of M if it has invertible diagonal elements. Let λ1 ≥ . . . λd > 0 denote the eigenvalues of Σ so
that κ(Σ) = λ1/λd. Rotating N (µ,Σ) using a rotation matrix R gives us N (Rµ,RΣR⊤). The RSGS coordinate
update matrix for N (Rµ,RΣR⊤) is

A(RΣR⊤) = I −DRQR⊤RQR⊤.

To study the maximum eigenvalue of this matrix, we first note two matrix properties. First, for all symmetric
positive definite matrices M,N , using the spectral norm, we have the inequality

1

minλ(MN)
= ∥(MN)−1∥ ≤ ∥M−1∥∥N−1∥ = 1

minλ(M)

1

minλ(N)
.

Also, since
∑d

j=1 r
2
i,j = 1 for the matrix R, we have

d∑
j=1

r2i,j
λj
≥

d∑
j=1

r2i,j
λ1

=
1

λ1
.
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Figure 16: Univariate and bivariate marginals of the horseshoe prior for β ∈ R2, approximated by drawing 100,000
i.i.d. samples from the generative model.

Combining these results, we have

maxλ(A(RΣR⊤)) = 1−minλ(DRQR⊤RQR⊤)

≤ 1−minλ(DRQR⊤)minλ(RQR⊤)

= 1−minλ(DRQR⊤)minλ(Q)

= 1−minλ(DRQR⊤)λd

= 1− λd min
i

d∑
j=1

r2i,j
λj

= 1− 1

κ(Σ)
.

Now, let rotd be the set of d by d rotation matrices. By Theorem 2 in Roberts and Sahu (1997), we have

ρL2(RSGS,Σ) ≤ sup
R∈rotd

ρL2(RSGS,RΣR⊤) (11)

= sup
R∈rotd

(
1

d
(d− 1 + maxλ(A(RΣR⊤)))

)d

≤
(
1

d

(
d− 1 + 1− 1

κ(Σ)

))d

≤ exp

(
− 1

κ(Σ)

)
.
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(a) Gaussian prior (b) Horseshoe prior

Figure 17: Median (across 30 replicates) wall-clock time (in seconds) per 100 minimum ESS for CGGibbs and
Stan NUTS on 12 logistic regression problems with real datasets. We use both a Gaussian prior (left) and
horseshoe prior (right). Each point is a dataset: its x-axis coordinate denotes the median time for NUTS, and its
y-axis coordinate denotes the median time for CGGibbs. The region beyond the dashed lines indicates that the
corresponding sampler did not reach a minimum of 100 ESS within three days.

Finally, combining Eq. (7), Eq. (11) and Theorems 4 and 6 in Roberts and Sahu (1997) gives us

ρ(B(Σ)) = ρL2(DUGS,Σ) ≤ ρL2(RSGS,Σ) ≤ exp

(
− 1

κ(Σ)

)
.

B.2 Proof of Proposition 4.2

Let Σ′ := DΣD be the covariance matrix after diagonal preconditioning using the diagonal matrix D and set
Q′ = (Σ′)−1 = D−1Σ−1D−1.

A(Σ′) = I − diag((Q′)−1
11 , (Q

′)−1
22 , . . . , (Q

′)−1
dd )Q

′

= DD−1 −D diag(Q−1
11 , Q

−1
22 , . . . , Q

−1
dd )D

−1DQD−1

= D(I − diag(Q−1
11 , Q

−1
22 , . . . , Q

−1
dd )Q)D−1

= DA(Σ)D−1

= D(U(Σ) + L(Σ))D−1

= DU(Σ)D−1 +DL(Σ)D−1.

Since DU(Σ)D−1 and DL(Σ)D−1 are upper and lower triangular matrices, respectively, we get

U(Σ′) = DU(Σ)D−1, L(Σ′) = DL(Σ)D−1.

Next, we have

B(Σ′) = (I − L(Σ′))−1U(Σ′)

= (DD−1 −DL(Σ)D−1)−1DU(Σ)D−1

= D(I − L(Σ))−1U(Σ)D−1

= DB(Σ)D−1.

Now, let λ and x be an eigenvalue and eigenvector of B(Σ′), then

B(Σ′)x = λx

⇔DB(Σ)D−1x = λx

⇔B(Σ)(D−1x) = D−1λx.
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Therefore, D−1x is an eigenvector of B(Σ) and λ is an eigenvalue of B(Σ) so that any eigenvalue of B(Σ′) is
an eigenvalue of B(Σ). Similarly, we also have any eigenvalue of B(Σ) is an eigenvalue of B(Σ′). Hence, B(Σ)
and B(Σ′) have the same set of eigenvalues which means they also have the same maximum eigenvalue modulus.
That is, ρ(B(Σ)) = ρ(B(Σ′)).

C From theory to practice

In this section, we provide additional details on Section 4 and make the connection from theoretical results to
experimental results.

C.1 Divergences between distributions

Let π1, π2 be given distributions and let C(π1, π2) be the set of all couplings of π1 and π2 (joint distributions
admitting π1 and π2 as marginals). The divergences used to study the convergence of samplers to their target
distributions in most works include the total variation (TV) distance

TV(π1, π2) = inf
(X,Y )∈C(π1,π2)

P(X ̸= Y ),

the p-Wasserstein (Wp) (p ≥ 1) distance

Wp(π1, π2) =

(
inf

(X,Y )∈C(π1,π2)
E(∥X − Y ∥p)

)1/p

,

and the Pearson-χ2 divergence

χ2(π1, π2) = E

[(
π1(X)− π2(X)

π2(X)

)2
]
, X ∼ π2.

More generally, we can define the Pearson-χ2 divergence for any π1 ≪ π2 as

χ2(π1, π2) =

∫ ∣∣∣∣dπ1

dπ2
− 1

∣∣∣∣2 dπ2.

The divergences presented above have several properties. We state some here without proof. For instance,

Wp(π1, π2) ≥Wq(π1, π2), p ≥ q ≥ 1,

and

TV(π1, π2) ≤
1

2

√
χ2(π1, π2) .

C.2 Convergence rates and mixing times

Another quantity of interest is the mixing time of a sampler, which is defined by the number of iterations required
for a sampler to be within a certain divergence of its target distribution. Precisely, the mixing time of a Markov
kernel K(·, ·) with initial distribution µ0 and target distribution π, with respect to a divergence D, is defined as:

tKmix(D, ϵ, µ0, π) := inf{t : D(Ktµ0, π) ≤ ϵ}, ϵ > 0.

The mixing rate is often used to compare the scaling of a certain quantity. Depending on which quantity that is
of interest (e.g., d or κ), we can throw away low order terms in the mixing time with respect to that quantity.
For instance, a mixing time of O(d log d) correspond to mixing rate O(d) if we focus on d scaling.

An important distinction between convergence rate and mixing time is that convergence rate is asymptotic with
respect to the number of iterations t, which does not capture its precise dependence on d and κ. The main reason
for this is due to the possible dependency on d and κ of the constant in front of the convergence rate. Therefore,
a tight mixing time bound can be a more comprehensive metric of performance for a sampler of interest.
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C.3 From convergence rate to ESS

Throughout this paper, we have relied on the effective sample size (ESS) to evaluate the performance of different
MCMC samplers. On the other hand, the theory we have discussed has mainly focused on mixing rates or times
of MCMC algorithms with respect to different divergences. In this section, we provide two results that connect
the theoretical convergence rate in total variation (TV) and χ2-divergence to the ESS.

Let us begin by introducing a few concepts. We say that a π-invariant Markov kernel K and test function
f ∈ L2(π) satisfy a CLT if there exists 0 < σ2

f <∞ such that

√
T

(
1

T

T−1∑
t=0

f(Xt)− π(f)

)
d→ N (0, σ2

f ), as T →∞. (12)

See Roberts and Rosenthal (2004) for a discussion of necessary and sufficient conditions. When Eq. (12) holds,
the variance of the running average satisfies (see e.g. Song and Schmeiser, 1995, Prop. 1)

Var

(
1

T

T−1∑
t=0

f(Xt)

)
=

σ2
f

T
+O(T−2). (13)

To see the importance of this equation, let us first simplify the notation (without loosing generality) by concentrating
on the subset of zero-mean test functions f ∈ L2

0(π) := {f ∈ L2(π) : π(f) = 0}. Then Eq. (13) can be rewritten as

Var

(
1

T

T−1∑
t=0

f(Xt)

)
=

π(f2)

Teff(f)
+O(T−2). (14)

where

Teff(f) := T
π(f2)

σ2
f

,

is the ESS of the test function f . Eq. (14) shows that, asymptotically in T , the variance of the running average

T−1
∑T−1

t=0 f(Xt) is approximately equal to the variance achieved by a simple Monte Carlo estimator based on
roughly Teff(f) i.i.d. samples from π. In particular, Teff(f) = T for every f in the ideal case where K produces
exact i.i.d. samples from π—that is, when K(x, ·) = π for π-almost every x.

In the following we rely on the fact that, when Eq. (12) holds, σ2
f can be written as (Roberts and Rosenthal, 2004)

σ2
f = π(f2) + 2

∞∑
t=1

Cov(f(X0), f(Xt)),

with X0 ∼ π and Xt+1|Xt ∼ K(Xt, ·) for all t ≥ 0.

Connection between TV and ESS The following result shows that for uniformly ergodic Markov chains
with rate ρ ∈ (0, 1), the ESS of a certain class of functions admits a uniform lower bound that is decreasing in ρ.
In other words, a more efficient sampler—that is, one with ρ closer to 0—should produce a uniformly higher ESS
for a certain class of test functions.

Proposition C.1. Suppose that there exists a constant C ≥ 0 and ρ ∈ (0, 1) such that for π-almost every x ∈ X
we have

TV(Kt(x, ·), π) ≤ Cρt.

Then, for any test function f ∈ L2
0(π) with |f | ≤ 1, we have that

Teff(f) ≥
T

1 + 4C
π(f2)

ρ
(1−ρ)

.
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Proof of Proposition C.1. Recall that the total variation distance between two probability measures µ and ν can
be characterized as (see e.g. Roberts and Rosenthal, 2004, Prop 3(b))

TV(µ, ν) =
1

2
sup
|f |≤1

|µ(f)− ν(f)|,

where the supremum is taken over all bounded functions f : X → [−1, 1]. Hence, for any f ∈ L2
0(π) with |f | ≤ 1

we have

|Ktf(x)| ≤ 2Cρt, π − a.e. x.

Then, using the Markov property, Jensen’s inequality, and the fact that |f | ≤ 1, we obtain

|Cov(f(X0), f(Xt))| = |E[f(X0)f(Xt)]| = |π(fKtf)| ≤ π(|f ||Ktf |) ≤ π(|Ktf |) ≤ 2Cρt.

Consequently,

∞∑
t=1

π(fKtf) ≤ 2Cρ

1− ρ
,

from which the result follows immediately.

Suppose now that we consider not one target distribution π but a sequence π1, π2, . . . of increasing complexity.
For example, they might involve increasing dimensionality di and/or condition number κi. In such case, if we have

TV(Kt(x, ·), πi) ≤ Cρti,

then we can make predictions on the decay of the relative effective sample size as i → ∞. To do so in an
interpretable way, we first rewrite ρi as

ρi = 1− 1

zi
,

where zi →∞ is a measure of complexity. For instance, suppose zi = i1/4 for optimally tuned and Metropolized
HMC when targeting an i-dimensional isotropic normal distribution πi.

Corollary C.2. Suppose that there exists a constant C ≥ 0 and ρi ∈ (0, 1) such that for πi-almost every x ∈ X
we have

TV(Kt(x, ·), πi) ≤ Cρti,

where ρi = 1− 1
zi

and zi →∞. Then, for any sequence of test functions {fi}i≥1 with each fi ∈ L2
0(πi), |fi| ≤ 1,

and lim supi→∞ πi(f
2
i ) <∞, we have

relative ESS =
Teff(fi)

T
≥ bi ∼

C̃i

zi
, i→∞,

where C̃i = πi(f
2
i )/(4C).

Proof of Corollary C.2. From Proposition C.1, we can pick

bi =

(
1 +

4C

πi(f2
i )

ρi
(1− ρi)

)−1

.

From our assumptions on zi, ρi, we have ρi/(1− ρi) = (1− 1/zi)/(1/zi) = zi − 1. Let C̃i = πi(f
2
i )/(4C). We can

rewrite the above expression as

bi =

(
1 +

1

C̃i

(zi − 1)

)−1

.
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It remains to show that bi ∼ C̃i/zi as i→∞:

lim
i→∞

C̃i/zi
bi

= lim
i→∞

C̃i

zi

(
1 +

1

C̃i

(zi − 1)

)
= lim

i→∞

(
C̃i

zi
+ 1− 1

zi

)
= 1.

For example, in the case of optimally tuned Metropolized HMC on isotropic normal targets, if zi = i1/4, we
obtain from the above corollary that the relative ESS decays at the relatively slow rate of at most 1/zi = i−1/4.

Connection between χ2 and ESS For a reversible Markov kernel K, Proposition C.4 below allows us to
translate the convergence rate in χ-squared divergence into a uniform lower bound on the ESS of L2(π) functions.

We start with a key technical lemma that draws the connection between the convergence rate in χ-squared
divergence and the decay of variance for f ∈ L0

2(π).

Lemma C.3. Suppose the Markov kernel K is reversible with respect to π. Further suppose that there exists
ρ ∈ [0, 1) such that for any initial distribution π0 ≪ π satisfying χ2(π0, π) <∞ and for all t ≥ 0, we have

χ2(π0K
t, π) ≤ ρtχ2(π0, π).

Then, for all f ∈ L0
2(π) and for all t > 0, we have

∥Ktf∥2L2(π)
≤ ρt∥f∥2L2(π)

.

Proof of Lemma C.3. First, by the reversibility of K (and Kt for all t > 0) with respect to π, we have that for
all distributions π0 such that χ2(π0, π) <∞,

Kt dπ0

dπ
=

dπ0K
t

dπ
(π-a.e.). (15)

To see this, we observe that for all g ∈ L2(π),∫
Kt

(
dπ0

dπ

)
gdπ =

∫
dπ0

dπ
Kt(g)dπ (by the reversibility of Kt)

=

∫
Ktgdπ0

= π0K
t(g)

=

∫
dπ0K

t

dπ
gdπ.

Eq. (15) combined with the definition of the χ-squared divergence then allows us to interpret χ2(π0K
t, π) ≤

ρtχ2(π0, π) as ∥∥∥∥Kt

(
dπ0

dπ
− 1

)∥∥∥∥2
L2(π)

≤ ρt
∥∥∥∥dπ0

dπ
− 1

∥∥∥∥2
L2(π)

. (16)

Under the assumption of Lemma C.3, we have that Eq. (16) holds for all t and for all π0 ≪ π such that
χ2(π0, π) <∞.

Consequently, we can conclude that for all bounded f ∈ L0
2(π) (i.e., supx |f(x)| <∞) and for all t > 0, we have

∥Ktf∥2L2(π)
≤ ρt∥f∥2L2(π)

. (17)

To see this, define the measure

pf (A) =

∫
A

f

supx |f(x)|
+ 1dπ,
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which satisfies pf ≪ π and χ2(pf , π) <∞. Then,

dpf
dπ

=
f

supx |f(x)|
+ 1,

and applying Eq. (16) with pf in place of π0, we get Eq. (17).

Finally, we focus on removing the boundedness assumption on f . For any f ∈ L0
2(π), define

fL,M (x) :=

{
min{f(x),M} as x ≥ 0
max{f(x),−L} as x < 0

Notice that for any M > 0, there exists L > 0 such that π(fL,M ) = 0.

Consider an increasing sequence Mn such that limn→∞ Mn = ∞. For any f ∈ L0
2(π), we can construct an

approximating sequence fn := fLn,Mn
, where Ln is chosen so that for all n ∈ N, fLn,Mn

∈ L0
2(π). Notably, Ln has

to be a non-decreasing sequence, limn→∞ ∥fn − f∥L2(π) = 0, and supx fLn,Mn
= max{Ln,Mn} <∞. Therefore,

for all f ∈ L0
2(π) and for all n ∈ N, we have that

∥Ktfn∥2L2(π)
≤ ρt∥fn∥2L2(π)

, for all t > 0. (18)

Because ∥fn∥L2(π) converges increasingly to ∥f∥L2(π) as n→∞, we invoke the monotone convergence theorem to
take the limit n→∞ on both sides of Eq. (18), which completes the proof.

Proposition C.4. Under the same conditions of Lemma C.3, we have that

inf
f∈L2

0(π)
Teff(f) ≥

T

1 + 2
√
ρ

1−√
ρ

.

Proof of Proposition C.4. Lemma C.3 yields that for all f ∈ L0
2(π) and all t ≥ 0,

π((Ktf)2) ≤ ρtπ(f2).

Therefore, by the Cauchy–Schwarz inequality,

|π(fKtf)| ≤
√

π(f2)
√

π((Ktf)2) ≤ π(f2)(
√
ρ )t.

Hence,

∞∑
t=1

π(fKtf) ≤ π(f2)

√
ρ

1−√ρ
,

and the claim then follows by replacing the above in the definition of Teff(f) and then taking the infimum.

We provide an analogous result to Corollary C.2 for a reversible kernel K in terms of χ-squared divergence
convergence.

Corollary C.5. Consider a sequence of target distributions πi. Suppose there exists ρi ∈ (0, 1) such that for all i,
for all t > 0, and for all initial distributions µ0,i satisfying χ2(µ0,i, πi) <∞, we have

χ2(µ0,iK
t, πi) ≤ ρtiχ

2(µ0,i, πi),

where ρi = 1− 1
zi

and zi →∞. Then, for any sequence of test functions {fi}i≥1 with each fi ∈ L2
0(πi), we have

relative ESS =
Teff(fi)

T
≥ 1

1 + 2
√
ρi

1−√
ρi

∼ 1

4zi
, i→∞.
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Proof of Corollary C.5. We only need to show that 1

1+2
√

ρi
1−√

ρi

∼ 1
4zi

. We do this by showing that

√
ρi

1−√ρi
∼ 1

1−√ρi
∼ 2zi.

Because ρi = 1 − 1/zi and zi → ∞, we have ρi → 1 and so the first asymptotic equivalence follows. Next,
by a Taylor expansion of h(x) =

√
1− 1/x about x = ∞, we have h(x) = 1 − 1/(2x) + o(1/x). Therefore,

1−√ρi → 1/(2zi).

Remark C.6. Note that the bounds in Propositions C.1 and C.4 should be reasonably tight in the limit ρ→ 0,
since for ρ = 0 they both recover the i.i.d. case Teff(f) = T .

C.4 From Gibbs to Metropolis-within-Gibbs

While the theoretical results discussed in this section concern Gibbs samplers (i.e., using full conditional updates),
the methodology described in Section 3 applies to any “Metropolis-within-Gibbs” algorithm. The reason for this
gap is that the theoretical analysis of the Gibbs sampler is more developed than that of Metropolis-within-Gibbs
samplers. Fortunately, recent work has shown how to relate the convergence properties of Metropolis-within-Gibbs
samplers with their idealized, full conditional counterparts (Ascolani et al., 2024b). Invariance under axis-aligned
stretching does not hold for Metropolis-within-Gibbs samplers. However, algorithms such as the slice sampler
with doubling are expected to be relatively insensitive to axis-aligned transformations (Neal, 2003).

D Connection between graphical model and compute graph

In this section, we sketch a simple proof that all savings made from graphical models derived Markov blankets
are recovered as special cases of the cached compute graph method.

Consider a target distribution π in Rd and, for any node θi in the graphical model of π, denote the parent nodes
of θi by Pi(θ). Then, for all θ = (θ1, . . . , θd) ∈ Rd,

π(θ) =

d∏
i=1

pi(θi|Pi(θ)).

Now rewriting pi(θi|Pi(θ)) = exp fi(Si) where Si is the concatenation of θi with Pi(θ), we have

log π(θ) =

d∑
i=1

fi(Si).

This last expression encodes the factor graph associated with the directed graphical model. To construct the
compute graph of log π from its factor graph, we create a new node corresponding to the output log π(θ) and
connect all fi(Si) nodes to this new node via a summation node. Crucially, that summation node is cached in the
same way as described in Section 3, i.e., by subtracting and adding updated values. Finally, by expanding the
nodes fi(Si) nodes into their respective compute graphs, we obtain the compute graph for log π.

Notice that when a node θi is updated, only the fj ’s connected to θi need to be updated. This set of fj ’s coincide
with the Markov blanket. Moreover, the number of updates to the summation node is equal to the number of fj ’s
updated.

E Effects of Gibbs sweep

In this section, we investigate how different types of Gibbs samplers affect the time per ESS of the chain. Here,
we consider 3 types of Gibbs samplers: DUGS, RSGS and random permutation Gibbs sampler (RPGS), where a
random but fixed update order is generated each sweep. Next, we repeat the experiment in Fig. 4 with both
normal and horseshoe priors for the 3 Gibbs samplers. The results are shown in Fig. 18 and Fig. 19. We can see
from these figures that the scalings in time per ESS for all 3 Gibbs samplers are relatively similar. This justifies
our decision to only use DUGS as the representative for Gibbs samplers. Moreover, DUGS tends to have the best
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Figure 18: Time per ESS for CGGibbs a function of dimension for colon dataset with normal priors. The box
plots summarize the results over 10 replicates.

Figure 19: Time per ESS for CGGibbs a function of dimension for colon dataset with horseshoe priors. The box
plots summarize the results over 10 replicates.

time per ESS, RSGS the worst and RPGS somewhere in between, further justifying our choice to use DUGS.
This is somewhat expected since, for normal targets, we often have ρL2(DUGS) ≤ ρL2(RSGS) (Roberts and
Sahu, 1997) and RPGS is intuitively a mix of DUGS and RSGS.
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